BRUSH SEALS FOR TURBINE ENGINE FUEL CONSERVATION

Mike Sousa General Electric Aircraft Engines Lynn, Massachusetts

Program Objective

Demonstrate Brush Seals For Replacing Labyrinth Seals In Turboprop Engines

Program Approach

- Design And Procure Brush Seals With Assistance From Sealol
- Modify And Instrument An Existing T407 Low Pressure Turbine Test Rig
- Replace Inner Balance Piston And Outer Balance Piston Labyrinth Seals With Brush Seals
- Conduct Cyclic Tests To Evaluate Seal Leakage At Operating Pressures And Temperatures
- Evaluate Effect Of Seal Pack Width And Rotor Eccentricity

Project Organization

T407 IBP And OBP Brush Seal Dynamic Test Rig

T407 Rig Assembled In Test Platform

Key Brush Seal/Rig Features

Outer Balance Piston Brush Seal

Inner Balance Piston Brush Seal

Seal Design and Fit - Ups

Puller Grooves To Facilitate Removal Of Seals		
Anti Rotation Pins A C D		
	OBP	<u>IBP</u>
Brush Seal Inner Diameter Cold (B)	10.1"	5.6*
Brush To Runner Diametral Interference - Cold (B)	.006	.008
Brush To Runner Diametral Interference - Hot (B)	.010	.010
Brush Axial Pack Width (C)	· · · · ·	
Backing Plate GAP (D)	.025 (.050)	.050
- , ,	.051	.044
Diametral Interference Fit With Stator Support - Cold (A)	.006	.004
*Maximum Stress ~ Seal Support	18 KSI	25 KSI
*Maximum Stress -Brush Seal	13 KSI	17 KSI

- * At SS IRP, Nominal Fit Up
 - Brushes Maintain Contact With Rotor At All Operating Conditions
 - Backing Plate Distance Sized For Worst Case Conditions Expected in Field
 - Backing Interference Maintained At All Operating Conditions Avoid Leakage
 - Stress is Acceptable Below .2% Yield Strength

Brush Seal Testing

- Build #1 75 Hours (Primarily-Diagnostic Testing)
 - Seal Flows Higher Than Anticipated
 - Tear Down For Review/Inspection
- Build #2 175 Hours 55 Cycles (Still Running)
 - Reduce Rotor Runout
 - OBP
 - Double Pack Width
 - Increase Bristle/Runner Interference
 - IBP
 - Same Seal Endurance

Brush Seal Performance Results

- Mixed Results For IBP And OBP Seals
 - IBP Seal Looks Promising
 - OBP Seal Needs Further Evaluation
- IBP Seal
 - Second Rig Build Demonstrated Better Performance Than Calculated Labyrinth Seal
 - No Apparent Deterioration With Time (>250 Hours And >60 Cycles)
- OBP Seal
 - Second Rig Build Demonstrated Better Max Power Performance Only (Hysteresis Caused Poorer Performance At Part Power)
 - Endurance Testing Appears To Have Increased Seal Flow

IBP Performance Data T407 IBP/OBP BRUSH SEAL LEAKAGE, RIG BUILD NO. 2 TBP FLOW PARAMETER VS PRESSURE PARAMETER \mathfrak{A} → IST BUILD DATA → CALC. LABYRINTH SEAL ,008 TON PROPETER WATT/0.5/1940 ,006 ,004 ,002 0 9 8 æ .5 PRESSURE PARAMETER (1-(Pd/Pu)^2)^0.5

Conclusions

- Seal Designs Currently On Test Were State Of The Art
 ~2 Years Ago Seal Designs Have Evolved Since
 Then As Demonstrated On Sealol Testing
- Incorporation Of Brush Seals Requires Attention To Design Details
 - Critical Parameters Include Rotor Runout
- Brush Seals Offer Performance Advantages Over Labyrinth Seals And Need To Be Pursued Further

· item Control of the contro